Friday, November 20, 2009

Matrix Equations

Matrix Equations

Different perspectives of a simple matrix equation of the form 
Ax=b  which might expand to something like \left|\begin{matrix}<br />1 & 2 & 3\\<br />4 & 5 & 6\\<br />7 & 8 & 9<br />\end{matrix}<br /> \right| <br />\left|\begin{matrix}<br />x_1\\<br />x_2\\<br />x_3<br />\end{matrix}\right| = <br />\left|\begin{matrix}<br />b_1\\<br />b_2\\<br />b_3<br />\end{matrix}\right|

Geometric picture
The solution for Ax=b , ie the values of x that will satisfy the equation, is the point where the 2 lines, 3 planes etc.. meet.  This is the picture that is normally presented.

Column picture
This is a more interesting and less common perspective.  Think of each column of matrix A as a column vector.
Each of the column vectors of A  are scaled by x and then added to get b.  So x_1 is the scaling factor for the first column, x_2 is the scaling factor for second column... etc. 

For example if x = \left| \begin{matrix} 1\\0\\0 \end{matrix} \right| ,  b will be equal to \left| \begin{matrix} 1\\4\\7 \end{matrix}\right| which is the first column of \left|\begin{matrix}<br />1 & 2 & 3\\<br />4 & 5 & 6\\<br />7 & 8 & 9<br />\end{matrix}<br /> \right| .  

\left|\begin{matrix}<br />1 & 2 & 3\\<br />4 & 5 & 6\\<br />7 & 8 & 9<br />\end{matrix}<br /> \right| \left| \begin{matrix} 1\\0\\0 \end{matrix}\right|=\left| \begin{matrix} 1\\4\\7 \end{matrix}\right|

Isn't that nice?

Row picture
Better example to see what is going on here is to look at  \left|\begin{matrix}<br />x_1 & x_2&x_3<br />\end{matrix}\right| <br />\left|\begin{matrix}<br />1&2&3\\<br />3&4&5\\<br />7&8&9<br />\end{matrix}\right|=<br />\left|\begin{matrix}<br />b_1 & b_2&b_3<br />\end{matrix}\right|
Here x_1 is a scaling factor of the first row, x_2 for the second row etc.   
For example if x=\left|\begin{matrix}<br />1&0&0<br />\end{matrix}\right|b will be \left|\begin{matrix}<br />1&2&3<br />\end{matrix}\right| which is the first row of \left|\begin{matrix}<br />1 & 2 & 3\\<br />4 & 5 & 6\\<br />7 & 8 & 9<br />\end{matrix}<br /> \right| .





No comments:

Post a Comment